Central limit theorems for eigenvalues of deformations of Wigner matrices
نویسندگان
چکیده
In this paper, we study the fluctuations of the extreme eigenvalues of a spiked finite rank deformation of a Hermitian (resp. symmetric) Wigner matrix when these eigenvalues separate from the bulk. We exhibit quite general situations that will give rise to universality or non universality of the fluctuations, according to the delocalization or localization of the eigenvectors of the perturbation. Dealing with the particular case of a spike with multiplicity one, we also establish a necessary and sufficient condition on the associated normalized eigenvector so that the fluctuations of the corresponding eigenvalue of the deformed model are universal.
منابع مشابه
Central limit theorems for linear statistics of heavy tailed random matrices
We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues...
متن کاملA Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner Matrices
The purpose of this note is to establish a Central Limit Theorem for the number of eigenvalues of a Wigner matrix in an interval. The proof relies on the correct aymptotics of the variance of the eigenvalue counting function of GUE matrices due to Gustavsson, and its extension to large families of Wigner matrices by means of the Tao and Vu Four Moment Theorem and recent localization results by ...
متن کاملFluctuations of eigenvalues and second order Poincaré inequalities
Abstract. Linear statistics of eigenvalues in many familiar classes of random matrices are known to obey gaussian central limit theorems. The proofs of such results are usually rather difficult, involving hard computations specific to the model in question. In this article we attempt to formulate a unified technique for deriving such results via relatively soft arguments. In the process, we int...
متن کاملNon–commutative (quantum) Probability, Master Fields and Stochastic Bosonization
In this report we discuss some results of non–commutative (quantum) probability theory relating the various notions of statistical independence and the associated quantum central limit theorems to different aspects of mathematics and physics including: q–deformed and free central limit theorems; the description of the master (i.e. central limit) field in matrix models along the recent Singer su...
متن کاملStatistical Behavior of the Eigenvalues of Random Matrices
This paper will investigate the statistical behavior of the eigenvalues of real symmetric random matrices. In particular, we shall be interested in the spacings s between adjacent eigenvalues. Let P (s) be the distribution of these spacings, in the limit of matrices of large dimension. Empirical evidence suggests that, for a large class of random matrices, P (s) is given approximately by the “W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010